How Plastics can Broaden your design Options

Progress beyond

Brian Chung Sr. Key Account Manager brian.chung@solvay.com

August 2022, Ethicon

Polymers for Healthcare

- Solvay Highlights
- Healthcare Portfolio
- What does it mean to be a Healthcare material
 - Relevant Biocompatibility
 - Chemical and sterilization data
 - Integrated material selection, design and regulatory approach
- Single Procedure Instrument example

The Polymer "Pyramid"

SPECIALTY POLYMERS* PFSA PAEK PFPE PAI PEEK FFKM EAP PFA / MFA® FKM PPSU **PVDF PTFE** ECTFE PESU MID RANGE PPA PPS ENGINEERING PSU LCP POLYMERS PARA HPPA HPP PVDC COMMODITY POLYMERS Amorphous Semi-Crystalline **Elastomers & Fluids** PC PPC COC PBT PET EVA EPDM EPR PMMA ABS POM PA 66 UHMWPE **PVC Alloys PP HDPE LDPE** PS PVC

*Solvay's portfolio of Specialty Polymers are indicated in bold white letters

Low performance

High performance

Material Selection | General Overview

High-Performance Plastics No patient contact Applications

- KetaSpire[®] PEEK
- Radel[®] PPSU
- Udel[®] PSU
- Veradel[®] PESU
- Ixef[®] PARA
- Amodel[®] PPA

High-Performance Medical Grade Plastics Limited exposure < 24 hours BioPharma (USP Class VI)

- KetaSpire[®] PEEK
- AvaSpire[®] PAEK
- \bullet Ixef $^{\! \mathbb{R}}$ PARA HC and GS
- Radel[®] PPSU
- Udel[®] PSU
- Veradel[®] HC PESU

Solviva Biomaterials for Implantable Devices Prolonged exposure, 24 h - 30 d Permanent exposure > 30 days

- Zeniva[®] PEEK
- Veriva[®] PPSU
- Eviva[®] PSU

Healthcare Portfolio Focus

- A simplified product grid of Solvay plastics used for medical devices.
- Listed products are commercially available polymers with ISO 10993 compliance.
- Solviva® implantable grades are circled.)

Ultra Polymers		KetaSpire® PEEK Zeniva® PEEK AvaSpire® PAEK
High Performance Polymers	Radel® PPSU Veriva® PPSU Udel® PSU Eviva® PSU Veradel® PESU	Ixef® PARA HC/GS Kalix® HPPA* Amodel® PPA*

Amorphous

Semi-Crystalline

*General purpose polymers

Focus Applications

Material Selection | General Overview

Requirement	Ixef [®] PARA	Radel [®] PPSU (Veriva [®] PPSU) Udel [®] PSU (Eviva [®] PSU) Veradel [®] PESU	KetaSpire [®] PEEK Zeniva [®] PEEK AvaSpire [®] PAEK
Biocompatibility		•	
Single-Use		•	
Repeated Steam Sterilization	•	•	
Disinfection Resistance	•	•	•
High stiffness			
Thin walled parts	•	•	•
Friction & Wear grades		•	•
Colorability		•	•

Material Selection | Biocompatibility Support

Test	Method	Eviva® PSU Veriva® PPSU	Zeniva [®] PEEK	Veradel [®] HC PESU	Radel [®] PPSU Udel [®] PSU	AvaSpire® PAEK KetaSpire® PEEK	Ixef [®] PARA
Complete characterization ⁽¹⁾	ISO 10993-18	\checkmark	\checkmark				
Physico-chemical	ISO 10993-18			\checkmark	\checkmark	\checkmark	\checkmark
Cytotoxicity	ISO 10993-5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Sensitization	ISO 10993-10	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Intracutaneous toxicity	ISO 10993-10	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Acute systemic toxicity	ISO 10993-11	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Subchronic toxicity	ISO 10993-11	\checkmark	\checkmark				
Genotoxicity	ISO 10993-3		\checkmark				
Bone and muscle implant tests	ISO 10993-6	Muscle	\checkmark				
Hemolysis	ASTM F-756	\checkmark	\checkmark				
Pyrogenicity	USP 151	\checkmark	\checkmark				

SOLV

⁽¹⁾Including exhaustive extractions and risk assessment

Material Selection | Sterilization Performance

	Steam (up to 134°C for 18 minutes)			Ethylene Oxide	Hydrogen Peroxide	Gamma Radiation
	10 cycles	500 cycles	1,000 cycles	100 cycles	200 cycles	40 kGy
AvaSpire [®] PAEK		٠			٠	
KetaSpire [®] PEEK	•	٠		•	٠	•
Ixef [®] PARA	•	٠	•	•	٠	
Udel [®] PSU	•	٠	•	•	٠	
Radel [®] PPSU		•		•	•	

Material Selection | Disinfectant Compatibility

Retention of Tensile and Impact Properties | Stress Crack Resistance 7-day Exposure Under Strain at 23°C

	Ixef [®] , Amodel [®] , Radel [®] , Kalix [®]	Udel [®] PSU	PC	PC/ABS	PC/PBT	
IPA 70%			•			
Cidex [®] (2.4% Gluteraldehyde)			•	•		
Clorox [®] Bleach (8.25% Sodium Hypochlorite)				•		
Vesphene [®] IISE		•	•	•	•	
Virex [®] TB		•	•	•	•	
Good = no cracking, > 90% retention of properties Fair = mixed failure modes, i.e., no cracking but loss of mechanical properties \bigcirc Good \bigcirc Fair \bigcirc Poor Poor = crazing and/or < 90% retention of properties						

Poor = crazing and/or < 90% retention of properties

Material Selection | Quality Systems

Healthcare Focused Regulatory Support

- Global coverage
 - Thousands of medical device clearances
 - (Spine, Orthopedics, ENT, Cardiovascular, Dental, Gastrological, Urological, Neurological)
 - Robust FDA Master Access Files & Technical Files for Medical Grade Polymers
 - Dialogue with regulatory bodies
- Direct support from Solvay RAPS experts for device submission questions and informational meetings

Polymers for Healthcare

SOLVAY

- Solvay Highlights
- Healthcare Portfolio
- What does it mean to be a Healthcare material
 - Relevant Biocompatibility
 - Chemical and sterilization data
 - Integrated material selection, design and regulatory approach
- Single Procedure Instrument example

Colorability

page 14

- Metal-like stiffness and strength
- Biocompatibility
- Exceptional surface finish
- Compatibility with Gamma sterilization

"There is growing demand worldwide for one-way instruments that are sterile pack and surgery ready to provide clinically robust solutions at a lower lifecycle cost than reusables." Lane Hale, president and CEO, ECA Medical Instruments.

Single-Procedure Instruments Application Examples

Torque Limiting Instruments

Application: Single-procedure, precision torque limiting instruments for securing medical device implants Innovation: Very high stiffness, surface finish and available colors enabled the

design of a single-procedure device for this procedure Product and processing: Ixef[®] PARA injection molding Advantages:

- High precision, torque limiting

